Friday Worksheet ¹HNMR spectroscopy 1

Name:

BACKGROUND ON NMR:

Below is a summary for interpreting NMR spectra.

i. The number of signals depends on the number of equivalent hydrogen atoms in a molecule. ii. The position of signals relative to the TMS is known as the chemical shift

and deals with the relative environment of the hydrogen atoms responsible for the signal. iii. The relative intensity of signals (generally referred to as the area under the peak) will give the ratio of equivalent types of hydrogen atoms.

iv. The signal splitting (spin-spin coupling) that creates the different set of peaks ie. singlet, doublet, triplet etc. provides information of the neighbours of the hydrogen atoms causing the signal.

1) How many signals are expected in the ¹HNMR spectrum of the following molecules? Draw the structure of each molecule.

a) CH₃CH₂CH₂COO H

b) Methyl propanoate

c) Propan-2-ol

2) Draw the ¹HNMR spectrum of each of the compounds below. Clearly show the signal splitting and the relative intensity of each signal.

a) CH₃CH₂OCH₂CH₃

b) CH₃CH₂COOCH₃

c) Butan-2-ol

- 3) Consider the ¹HNMR spectrum on the right.a) What is the signal at 0 ppm?
 - b) Which of the following molecules is likely to be represented by this spectrum? Explain.
 i) methyl propanoate
 ii) butane
 iii) butanoic acid.
 iv) ethanol

4) Below is the ¹³CNMR for butan-2-ol

- a) How many chemically different carbon environments exist?
- b) Why is there no signal splitting in ¹³CNMR but there is in ¹HNMR?
- c) Why ¹³C is used for analysis and not ¹²C, which is the more abundant isotope of carbon